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Authors of [I and 2lhave shown that in the investigation of the stability of processes 

with distributed parameters, Liapunov functions should be replaced tiith funcrionals. A 

method of constructing these functionals is, holwever. not given. In the present paper 

we show, that the functionals analogous to Liapunov functions can be constr,ucted for the 

investigation of the stability of solution of a system of linear integro-differential equa- 

tions and, that they appear as integral quadratic forms. The problem of constructing 

these functionals is thus reduced to solving a boundary value problem. 

For nonlinear systems of integro-differential equations, stability theorems in the first 

approximation are proved. 

An analogous problem for a system of partial differential equations and plane fluid 

flow, is solved in [3 and 41 , 

1. Let us consider the process described by the following system of partial integro- 

differential equations 

x = (% %...J?n)r 2 = @I, ~2,...,GtJ, cp = (q-Jl, (C27...,%) (1.3) 

Here t is the time, Cp is the vector function describing state of the process and 

X,. xa ****,x. are t&e coordinates in the region T within which the process is taking 

place, When the integration with respect to 2 is performed, then the region 7 is 

denoted by T, , 

The coefficients &j = &j (Z), aijP = &fp (s), &jq = atq (3) are continuous 
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and twice differentiable with respect to the coordinates XI, ~2 , . . . , xm d The ker- 

nels 11 =K,(x, 2) and b,, =bi,(x, 2) are regular and Ki =K,(X, L) are 

assumed to be symmetrical and closed. 

We also assume that the system (1.1) contains derivatives with respect to X of up to 

the second order inclusive. The methods of construction are applicable to other cases. 

The functions cpi(x, $) f (6= 1, 2 ,‘,., TZ f satisfy the homogeneous boundary 

conditions , e. & 

~[.Aij(2)(Pj(T,t)-t_ $J A~~T~(:E)~~l-_O (ZCS) (1.4) 

j=l p=i 

where 3 is the surface bounding the region 7. 

Some of the coefficients At J and d 1 J” may be equal to zero and this depends on 

the problem, e.g. when AijP s 0 , then the boundary conditions reduce to (qj)S= 0 

Cj= l,*** I n1, 

We assume that for the given initial R = p ( x , 6 = 5, ) and boundary conditions 

(1,4), the system (1.1) has a unique solution for 8 2 7& . When the process is unper- 

turbed I we have cp I 0, t > t,, x E z. Initial conditions differ for perturbed and 

unperturbed motion. In the present case the initial conditions are kept unperturbed, 

We should note that, when we speak of perturbing the initial conditions, we understand 

that the perturbations act continuously. Such a case is dealt with in the investigation 

of the stability of plane fluid flow in [4J, 

We shall introduce p- = p [ Cp ] representing some positive functional, as the measure 

of stability. It will characterize the behavior of the system in the mean over the region 

7^ at any instant of time t 2 e0 l In a number of cases t additional constraints imposed 

on the initial conditions by means of another measure p o = PO [ cp ] f are found advan- 

tageous. At the same time we assume that P 2 cpo * where c is a positive constant, 

The process cp Z 0 is called stable in both , p and p. , if, for any positive E 

such 6 = 6(C) > 0 canbe found that p SC, (6 2&,) when po < 6(c), (t= &), 

A nonperturbed process cp 5 0 is called asymptotically stable in both measures if it 

isstable in p and p0 and if p -) 0 as $-‘a. 

When the stabiIity in one measure is considered, we assume that & 5 p . 

2 l Functionals representing the analogues of tiapunov functions. satisfy the following 

functional equation 
du.,I dt = u cw 

Here the derivative with respect to ti is calculated according to (1.1) with (1.4) 

taken into account, while U and U are functionals l 

We shall first construct the solution of (2. l), as a linear integral form 

Its derivative with resnect to e will be 
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Utilizing (1.1) and integrating by parts, we obtain 

where s, is the surface 3 when the variable of integration is denoted by X, 

SOme of the terms in 8 will, by virtue of the boundary conditions (1, #), be equal 

to zero, Let us choose, for the functions fr (x) , such boundary conditions that q= 0 . 

Let 
l ?J. 

u_ rzT.T !A ’ Ui(X)Q(X,t)dT, (2.5) 
T x j=l 

Insertion of (2.3) and (X5) into (2.1), yields 

Jv: (!I? f2,..., ~~)+j;%b,iii;,:U)fr(z)dr,-u,(r) (j=1,2,...,n) (2.F) 

which represents the system of equations defining the functions fi = fi (X ) with 

Uf =tli(X) {i = 1, 2, . . ..n) given. 

Now, Equation (2.1) will satisfy the integral quadratic form 
. 1 7% 

Let us find C? V/d $ in accordance with (1.1) 
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We shall introduce, for the functions J” Q =f~(x , 5 ) , such boundary conditions 

that the surface integrals in (2.8) become zero, i.e. 
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If some integral quadratic form V (2. ‘7) is given, then its derivative will, by virtue 

of (x.1), be represented in the form (2, 8). With the boundary conditions of the func- 

tions J&(X, 5) satisfying the relations (2, 101, the derivative d V/d t will again 

be an integral quadratic form in C& (X , $) l 

Let the functional U be given as an integral quadratic form 

(2.11) 

Equation (2,l) is satisfied, when 

L:j [f11(5,~),..*,f,,‘(s,~)I r=_: uij(s,%> {i, j = 1, ?,...,?a) (2.22) 

are fulfilled. In order to consuuct the integral quadratic form V (2.7) with 242.11) 

given, we must solve the system (2. 12) for j$J -frj(X, 4;) with boundary conditions 

following from (2.10). In this case, the problem of constructing the functional satisfy- 

ing (2. l), reduces to the solution of a boundary value problem. 

Equation (2, I) can be satisfied by integral forms of higher orders, but the correspond- 

ing equations shall not be quoted here. 

Note, In some cases, Equation (2.1) can be satisfied by a form, linear or quadra- 

tic in dCp, /3X, , e.g. by the linear form 

or by the form, which is a linear combination of U given by (2.2) and V& [B]. 

Let II. (2.11) be a form, positive definite in p . We shall denote the class of func- 

tions (uij (5, E)), 5 E ‘& and EE Q, satisfying this condition, by li 
P’ 

If the 

system (2.12) has a solution with given UQ(X, 5, belonging to the class ?$ , then a 

form V which satisfies (2.1) with U given, always exists. 

In the following we shall assume, when considering the sign definite form @, that 

(2.12) has the solution J’& (X , 5) and, that the corresponding form V is continuous 

over p, 

Below we shall use two theorems, which represent the modifications of theorems first 

proved in p and 21. 

Theorem 2. 1. If a functional V = V [Cp] continuous and sign definite over p 

exists for (1.1) and if its derivative with respect to time is, by virtue of (1.1). also sign 

definite l but of the sign opposite to that of V = V [cp] t then the process Cp 5 0 is 

asymptotically stable in $3 l 

Theorem 2. 2. If a functional V = V [Cp] continuous over the measure p exists 
for (1.1) and if its derivative with respect to time is, by virtue of (1. l), sign definite 

while the functional itself is not of constant sign opposite to that of U = U&J] , then 

the solution Cp 3 0 is unstable in $3 . 
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When the stability of processes with distributed parameters is investigated, then, by 

the Theorems 2. 1 and 2.2, the sign definiteness and continuity of the functronals V or 

U (analogues of Liapunov functions) must be checked. For one particular case, the cri- 

terion of sign definiteness is given in the Appendix. If the function f’(;c, 5) with an 

integrable square is the solution of(2.12), then the form V (2, 7) will be continuous 

over the measure 
71. 

P” 
cz ‘Di? drx 
;X i=l 

which is easily confirmed by applying the Cauchy-Buniakowski inequality. 

The measure of stability p is found a priori from the physical considerations. In 

isoIated cases, adoption of the functional V (2.7) as the measure p is of interest. We 

find that in this case the check on the sign definiteness and continuity ceases to be neces- 

sary and the magnitude V > 0 characterizes the behavior of the process in the mean 

over the region 7 , with respect to time . 

3. Let us consider a nonlinear system of integro-differential equations 

“Pi 
-= 

at ~5 (9) + 1 i bi, (5, z) ‘p, (~7 t) drz + @i (i = 2, 2,..., n1) 

TZ p=l 

s 

“Pi 
Ki (z, 2)x dr, = -& (up) + S i hip (3, z) ~~ (21 t) d7, + Qi 

5Z TZ p=1 

(i = 111 + I,..., n) (3.1) 

Here @t = @i(X. 6, Cp,... > are functions nonlinear in Cp E Cp( p , Cp a , . . . , Cp ?) 

and in its derivatives with respect to coordinates xl , x2 , . . . , x, , and first terms of 

their expansions are of the order higher than the first. We shall call the system (1. 1). 

the first approximation equations, 

Theorem 3. 1 . Solution Cp Z 0 of the nonlinear system (3. 1) is stable in p , 

if it as asymptotically stable in the first approximation, if the functional U (2.7) is 

continuous in p and if the condition 

is fulfilled. 
U + &r < 0, 

AU 
for I 1 u <&<I (3.2) 

Here (3.3) 

!uL== 15 i fi,(~. ~)&;(x, t)cI’&t, cp ,... )+cI+, t,~ ,... )qpi(;, t)]dr,dz: 
‘X 1; i, j=l 

and ‘u is a negative definite form defined by (2.11). 

Proof , Consider the integral quadratic form V satisfying the equation V’ = 11, 

where the right-hand side is a negative definite integral form (2.11) and the derivative 

79 l is computed according to the linear system of the first approximation (1. 1) . By 

definition of the theorem, U is continuous in p and the solution cp = 0 of (1.1) is 

asymptotically stable. Moreover, three following variants are possible : form ZJ may 

assume negative values, form ?.J may be permanently positive or, it may be positive 

definite. The functional U cannot assume negative values, since in that case Theorem 
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2.2 would be valid and the process would be unstable, Assume that V 2 0 when p # 0. 

Let us consider the process with initial state p # 0 , for which V = 0 . But V l c 0 , 

Hence, in the course of the process we should obtain V < 0 which is impossible, Since 

by definition V is nonnegative, it can only be positive definite. 

Let us now constiuct the derivative of this form with respect to time and according to 

the nonlinear equations (3.1) ; theresultwillbe V’=U+AU~O. Form V iscon- 

rlnuous and positive definite, while U+ AU is nonpositive. ~onsequently~ the solurion 

v S 0 of the nonlinear system (3.1) is stable. If U + AtL is negative definite, then the 

process C&Y z 0 is asymptotically stable. 

Theorem 3. 2 l Solution ep E 0 of the nonlinear system (3.1) will be unstable 

in p , if it is unstable in the first approximation, if the functional V (2.7) is continuous 

in P and if U + A l-4 (where A U is given by (3.3)) is a sign definite functional of the 
same sign as (2.11) , 

Proof l Let the form V (2.7) satisfy Equation V ’ = U, where U is a positive 

definite form of the type of (2.11) and V’ is calculated according to the linear system 

of the first approximation (1.1). Moreover, the form V cannot be negative definite, 

since in that case the process (g z 0 would, according to Theorem 3.1, become asymp- 

totically stable, which contradicts the condition of the Theorem, It also cannot be 

permanently negative, since that would give V = 0 for some P # 0 . Assumption that 

V l > 0 implies that V > 0 and that contradicts the initial assumption that V $ 0 . 

Thus, the integral form V will not be of constant sign opposite to that of U. 

Let us now compute the derivative V’ according to the complete system (3.1) and 

represent it in the form V l =U+nU . Here U + n V is a sign definite, e, g. a positive 

definite functional, while V is continuous and is not of constant, ana opposite to that of 

U+AU. sign. Consequently, the solution CQ - 0 of (3. 1) will be unstable. 

Q. Examples . (1). Let us consider a process defined by 

Here $/ 1 = $1 (X) is a complete , orthonormalized system of functions in the interval 

r0,a1. We shall represent the solution of (4.1). as 

‘p= 5 aiI+#+) 
i=l 

and we shall investigate the stability over the measure 

p=vz 
s 

0 i=l 

Lex us find the derivative of V in accordance with (4.1) 

(4.2) 

If b i s 0 , then the Prog$:s Cp = 0 is stable . If, on the other hand, bi < 0 and 

limbi SO as t- a3, then V l is negative definite (see Appendix). Moreover, the 

process cp s 0 becomes asymptotically stable. 
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2) . Consider a nonlinear equation describing the vibrations of a string in a resisting 

where ep - cp(x , A) is the deflection of the string from its equilibrium position cpz 0. 

Introducing the notation 89 
VI=== ;7t-, q& = cp 

we obtain (4.3) in reduced form 

Let us consider the stability over the measure 

and the integral form 

With ‘pz (0, I) = ‘pz (n, 1) = 0, we obtain 

where UI and U 2a are given by 
‘a, M 

ull = x usi sin sx sin rF, U% = x us; cos sr cos r4 
S, r=l- S, r=I 

We shall consider the integral form U represented by 

Let f4.8) 

The function Cp 2 (X , 6 ) becomes zero at the ends of the interval [0 , l-r] , hence 

the boundary conditions fi j are arbitrary , 

Putting ?,p;o,(O, ~5) = rg,( TT, $2 = 0, we obtain 
lix 

v= 
ss 

{FXlq% (r, q cpi (5.G -t- F32(Pl(% tj(Pn (410 + 

+ k?:,, lx, t) ‘PI (5,q + F&f% (2, t) cp2 6 t)> ds 4 

Integral form 27 exists if the system (2.12) which, in this case, can be written as 

d”FI1 7 
Fs + b 12 -I- 2bFn = ~11, bJi12f~22f-3@-=~ 

has a solution, 

By (2. IO)* we have the following boundary conditions : 
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This system can be represented as 

2;$$+ y$+$&b;p&, /;,l_-~(c,J+~~~) 
s 

and we shall seek the solution of the above equations in the form 
xl u3 

F~L = x A,,sinsxsinrc, ~ZJ = x IIsr sin sx sin r4 
f, I’---1 F, ,‘Z_1 

(4.lfl) 

(4.11) 

(4.12) 

(4.13) 

Let us insert (4. 13) into (4.11) and (4.12) . Taking (4.7) into account, we obtain the 

following system of algebraic equations for A,. and L$, 

- (s? + r2 + Zb?) As,. f- 2B,, = -bus,’ 

which yield 
2.s2raAsr - (s? + r?) Bsr = -bsru,,” 

A,, = 
- b (s? -(- r?) usr’ - 2bsrusr” 

.> 

(9 -+ r? + 2b’) [b (9 -1 r?) usrf + 2t)Sr~spM] 
Usr = - ;- Usp’ - ___ 2 14s”r” - (~2 + r?) (,$ f p? + 26’2)] 

(s, r = 1,2, . . .) 

(4.14) 

Expression (4.13) defines the functions F’ and Fza , while (4.11) and (4.12) 

define FE and Fzl 
~~~ = _ $ 5 (Bsr - r2Asr) sin sx sin r< 

s, r-1 

Fz1= -$ 2 (B,, - s2Asr) sin sx sin rE 

s, t-1 

Having determined F,, , pla , Fzl and Fza we can, by means of (4.8) and (4.9), 

determine the functional U . Let 
U 81"1 = ugrsgrr ugrn = Us"Q,,. 

Then A,, =Bar = 0 when S#r. and 
1 

A,, = -z (Us’ + u,_), 

Let us determine 

fll = 5 A ss sin sx sin SE, 

s=l 
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We shall represent the solution of equation of vibration of a string by 

‘pr 3 2 cl,sinsz, Q L= 2 3, sin SL 
sr;_L s=l 

In case of linearized equations we have 

as = as eos st -t_ b, sin sl, tjs = -src, sin sl i- sb, cm .st 

where a, and b, are constant coefficients. Then 
cu 

(4.15) 

(4.16) 

The process Cp s 0 is stable in the first approximation over p and the ‘functional 

If the coefficients U, ’ and 7.4, ’ are bounded, then the form U is bounded and con- 

tinuous over p . Indeed, we have the following estimate : 

Taking into account 

f4.18) 

we obtain 

bet us now consider the negative definite form U . When u,‘lb > 0 and u,"lfi > 0 

we have the inequaliq 

Consequently, the Sylvester criterion 

6~~’ + =,“)/b 

- us” / b 
[s2,u;y~;“;lbh i = 52 (y)B- (?+o 

is fulfilled for all .S = 1, 2 , . . . . and 0, can be expressed as a series with positive 

terms. If also PL 8 > 0 , then a number 6(C) > 0 exists such, that U 2 Uo > 6(E) 

(see Appendix), Gonsequentty, the form U is positive definite, Now consider 

uZ1 (5, 5) = - 6 (Z - Q, LLzZ (3~~ 5) = -8 (A---Q, i,e. us’ = us”= --1 

Let b < 0 and let D be a bounded, ~on~nuo~ and positive definite form over p and 
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If the nonlinearity $ is such &t 1 du 1 / I u / < E < 1, where 
XiT 

Au;= ” 
sac 

ft1[cp1(z,t) @(E,L* ..)-I- @(x,t! 1 .IT1(4? l)l-:~ 

00 

+j,*+t,_,%p+ fzl ~c$(~,i....)jd~d~ 

then the process cp z 0 will be stable on (I with nonlinear terms taken into considera- 

tion. For example, we have the estimate 
ii 

where Al and A 2 are constants, then 1 AU 1 / 1 u I< const ~“12. With p sufficiently 

small, the functional U + AU will be sign definite and of the sign opposite to that of 

V. Consequently, the process cp s 0 will be asymptotically stable with nonlinear terms 

of (4.3) taken into account, 

6. Appendix , Let the measure 

be given and functions cpi 

p. = t > fo 
T i=l 

be represented by the series 

(2.1) 

Lxki = ak’ (t) == \ ‘Fi (2, t) $Jk (IL) dlt, XE z, t _=to (.5.2) 
k=l T 

Here & = & (2) is a complete normalized orthogonal system of functions in the 

region T . Consider the form U given by 

zl -1 $ i Q(ri,)2 (5.3) 
k=L i=l 

For the measure PO we have 
po = 5 i (a”,) 2 (5.‘:) 

k=l i=l 

We shall only consider such \n zggregate [a,‘] for which P o is bounded, i, e. a 

series whose general term (CX k ) converges as k+ m , 

If Uik >O and limUi’20 as k-)m, then the form U will be positive definite 

over PO . Indeed, let E > 0 and Po z c > 0 be given, 

The series (5.4) is convergent, hence we can say that the final term of (5.4) will be 



The stability of processes with disafbuted parameters 47 

smaller than any positive number E* , e. g. f& = 9 & e provided that N is sufficiently 

large N-1 n 63 n 

k=li=l k=N i=l 

co n N-1 R 

Zmin(uih’j 2 2 (uki)‘>min(u~*) +=6(e)>O 
k-1 i=l 

where fl is dependent on t: , Thus U is positive definite over p o . For any positive 

number E there exiss a number 6 = 6(e) > 0 such, that U 2 d(e) when p0 > E . 

We should also note that the form 

is positive definite over p. I if 
k i j 

“k = “ij ‘k ‘k 
i, i=l 

is positive definite for any fixed k 2 1 and when k+m , or, when uiJk --) 0 as k-m, 
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